Most Patients with Elective Left Main Disease Should be Treated with PCI!

Farrel Hellig

Sunnnghill and Sunward Park Hospitals
Johannesburg
South Africa

Everything that can be invented has been invented

(Charles H. Duell, Commissioner, U.S. patent office, 1899)

It would be crazy to believe that we have achieved the best we can in revascularization therapy of LMCA

The "Gold Standard" is a transient phenomenon until we do better

Therefore the debate is not about 1 modality vs another as separate conceptual paradigms, BUT.....

The more appropriate question is:

"How far have we traveled along the inevitable road of progress and what role can PCI offer in 2013 in certain circumstances?"

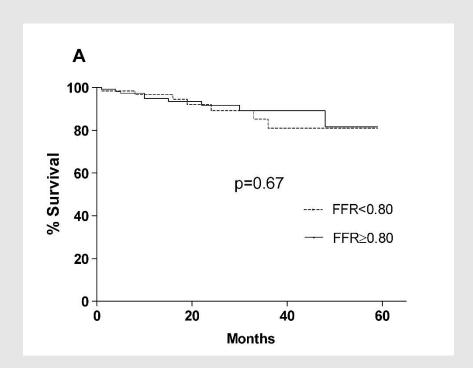
Why has CABG become the "Gold Standard"

- Because it was first!
 - Therefore it will by definition always have longer follow-up
- Very poor early results with POBA
 - 1988: ACC/AHA task force on PTCA declared LMCA stenosis a contraindication to PTCA
- Resulting LMCA Dogma:
 - The left main stenosis is dangerous and requires revascularization for a ≥ 50% stenosis
 - PCI of the left main is dangerous!

The designation of CABG as a "Gold Standard" is founded on very little evidence

Historic Treatment is based on the evidence that CABG is superior to Medical Therapy

- The evidence is outdated because medical therapy has improved significantly
- The guidelines were based on a meta-analysis of 7 trials of stable angina conducted in the 1970s
 - Patients with LM disease made up only 6.6% of the study population
 - only 150 LMCA patients were randomized in 7 studies
 - Aspirin use 18.8%
 - No Statins or ACEi


Yusuf S. Lancet 1994;344:563-70

Should the cut-off still be 50% DS??

What is a LMCA stenosis?

- Treatment can safely be deferred if:
 - IVUS CSA \geq 6.0 mm²
 - FFR > 0.80

Abizaid. *J Am Coll Cardiol*, 1999; 34:707-715 Jasti. *Circulation*, 2004; 110:2831-2836

Hamilos. Circulation, 2009; 120:1505-1512

What is so scary about LM PCI?

- In Hospital
 - Large territory
 - Complications are potentially fatal

Long-Term

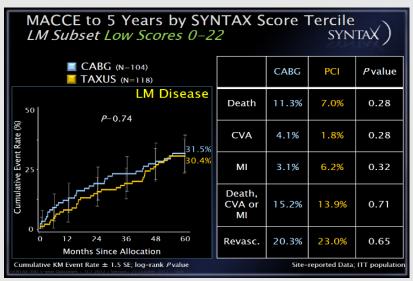
- Restenosis
 - potentially fatal

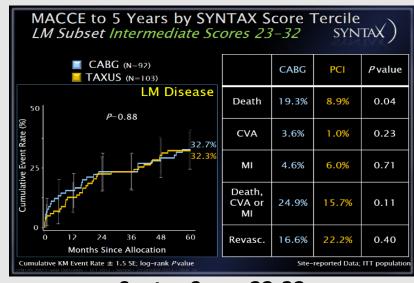
- Stent thrombosis
 - very high mortality

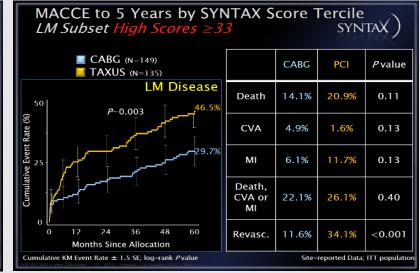
LMCA stenosis has historically been <u>the</u> surgical disease The interventionalist's no-man's-land

Despite its "Dangerous" location, left main PCI is associated with < 1% intra-procedural death

Mortality:


Study	N of DES	in hospital	30d	6m	12m
Chieffo et al Circulation. 2007:116;158	147	0%	0.7%	-	-
Park et al. IACC 2005:45:351	102	Λ%	_	_	-
Valgimig Left main stenting	procedure has	low acute	<u>mortalit</u>	Y	-
Price et Weig	hted mean of regist	rv data			-
Chieffo €					-
Migliorin In	hospital mortality: (0.5%			-
Khattab 30 day mortality: 2% -					
Han et al Chin Med J.2006. 119 :544	63	1.3%	-	-	-
Seung et al NEJM 2008: 358 ;1	784	-	-	-	4.1%
Chieffo et al Circulation. 2006.113:2542	107	0%	-	-	2.8%
White et al JACC. Intv. 2008:1;236	120	-	3.3%	-	10.8%
Palmerini et al Am J Cardiol.2006:98;54	94	-	3.2%	-	11%
Sanmartin et al Am J Cardiol. 2007:100;970	94	-	2.1%	-	5.2%
Buszman et al JACC. 2008.	52	0%	-	-	1.9%
Total	2109				


CABG Perioperative Mortality in LM patients


	Mortality	
STS	3.9%	
Sabik et al.	2.6%	
d'Allonnes et al.	4.7%	
Katz et al.	4.1%	
Dewey et al.	2.6%	

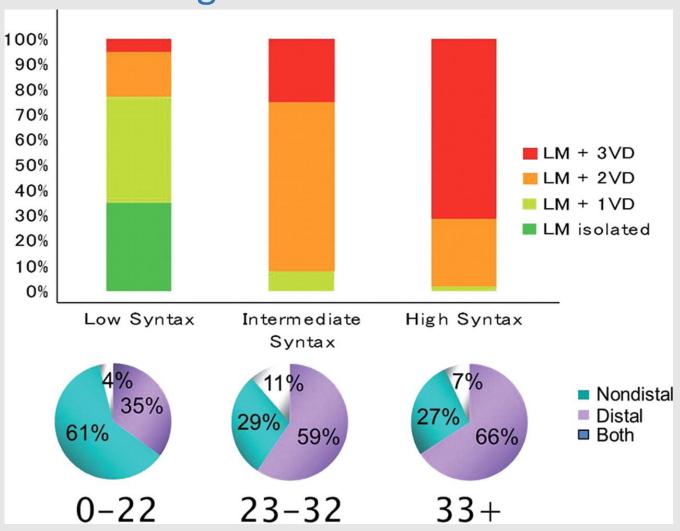
So the procedural success is similar. What about longer term outcome?

- The long term outcome of PCI or CABG is NOT different for isolated LM
- The outcome is determined by other disease beyond the left main

Syntax Score 0-22

Syntax Score 23-32

Syntax Score >33


Serruys P. et al. TCT 2012

For Syntax Scores > 33 (40% of cases):

there is a clear benefit for CABG and these cases fall outside of this debate

Vessel distribution in left main population

according to SYNTAX score terciles

Who should **NOT** get a Left Main Stent?

- Lesions that are not feasible technically
- Very diffuse multi-vessel disease with SYNTAX scores>33
- Left main plus occluded RCA if they are surgical candidates
- Patients who will not be or can't be compliant with ASA and Plavix
- Diabetics with multivessel coronary artery disease

Everything else can be considered for Either PCI or CABG in a heart team model

Outcome issues for PCI

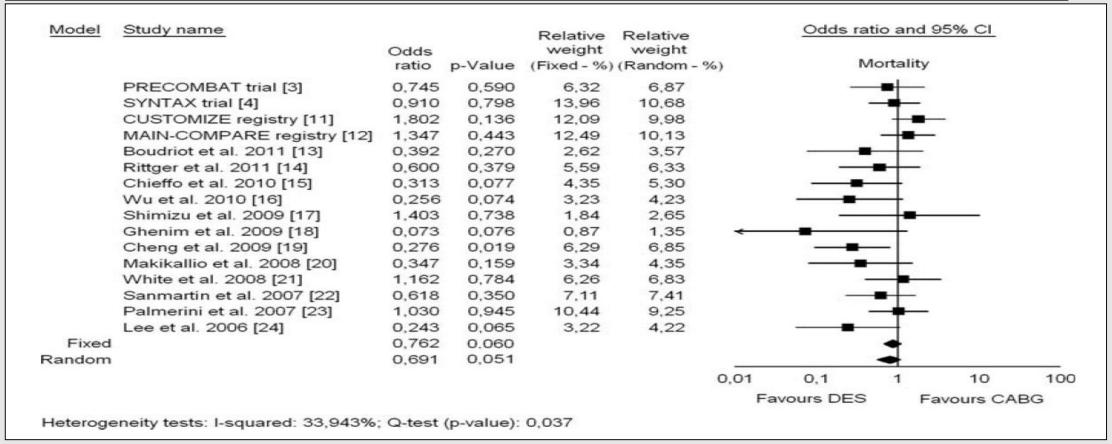
Mortality

Stent thrombosis

Repeat intervention

Outcome issues for CABG

Mortality


Stroke

Repeat intervention

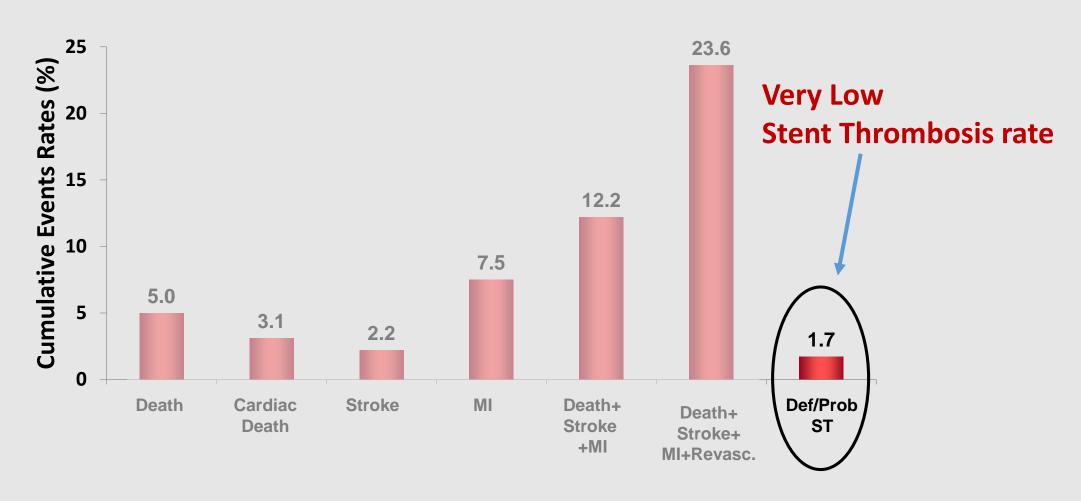
Meta-analysis of all PCI with DES versus CABG for Unprotected LM

3 RCTs, 13 retrospective studies 5674 patients (PCI, n=2331; CABG, n=3343)

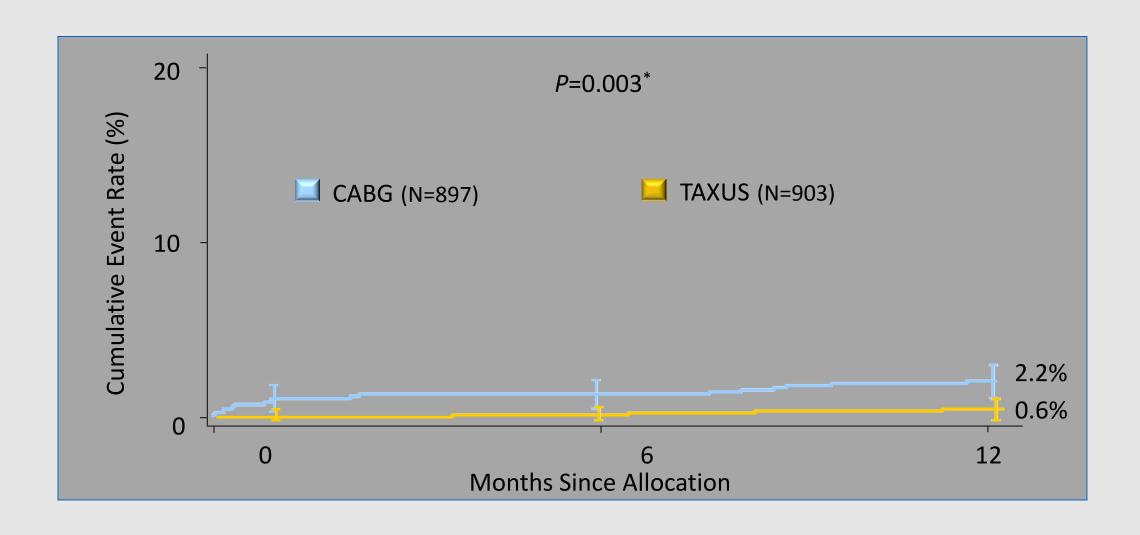
No Difference in Mortality between PCI and CABG

DATA from 4 Randomised trials:

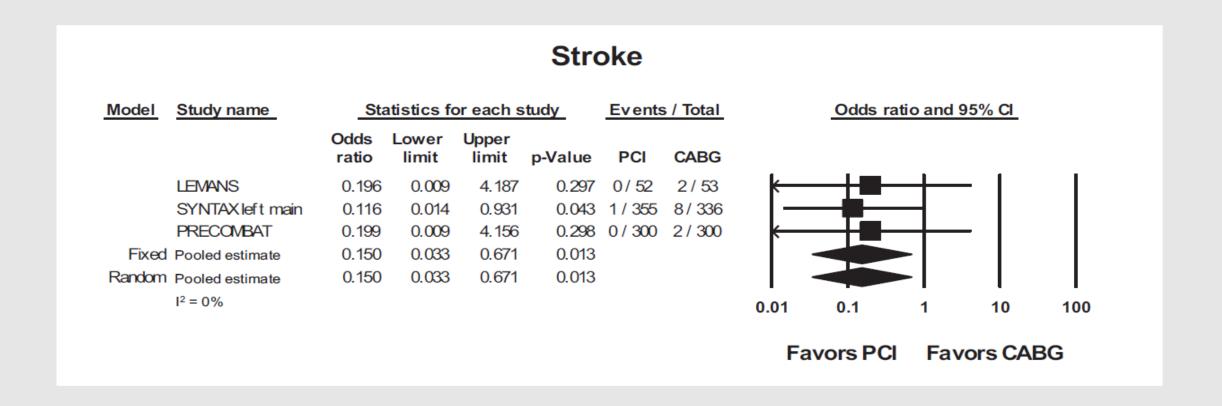
No Difference in Mortality between PCI and CABG


Distal LM in 64% of cases

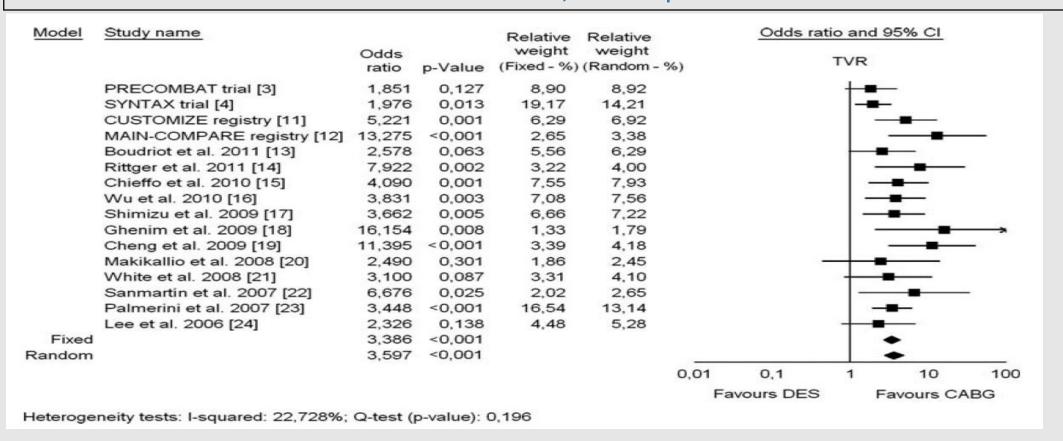
Mean SYNTAX Score ranged from 24-30 Mean Log EuroSCORE ranged from 2.5-3.9


Death

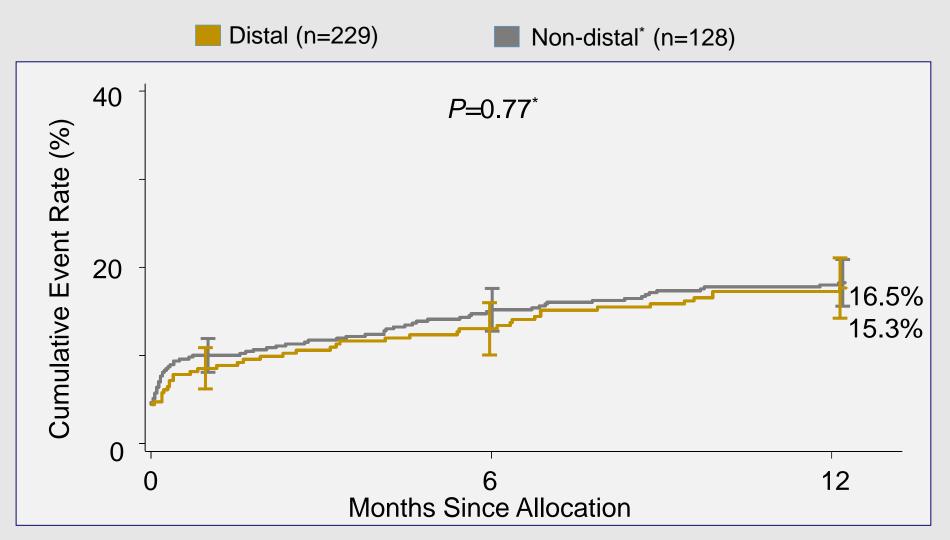
Model	Study name	Statistics for each study		Events	s / Total Odds ra		tio and 95% CI					
		Odds ratio	Lower limit	Upper limit	p-Value	PCI	CABG					
	LEMANS	0.240	0.026	2.225	0.209	1 / 52	4 / 53	1 -		+	- 1	- 1
	SYNTAX left main	0.944	0.454	1.963	0.878	15 / 355	15 / 336			-		
	Boudriot et al.	0.392	0.074	2.069	0.270	2/100	5 / 101	- 1				
	PRECOMBAT	0.745	0.255	2.173	0.590	6/300	8/300	- 1	I —			
Fixed	Pooled estimate	0.741	0.427	1.284	0.285				-			
Random	Pooled estimate	0.741	0.427	1.284	0.285				- - ∢			
	I ² = 0%							0.01	0.1	1	10	100
								Fav	ors PCI	Favo	rs CAB	G


Follow-up in 1,528 Left Main PCI Patients for 4.4 years

SYNTAX: 4 Fold increase in Strokes with CABG

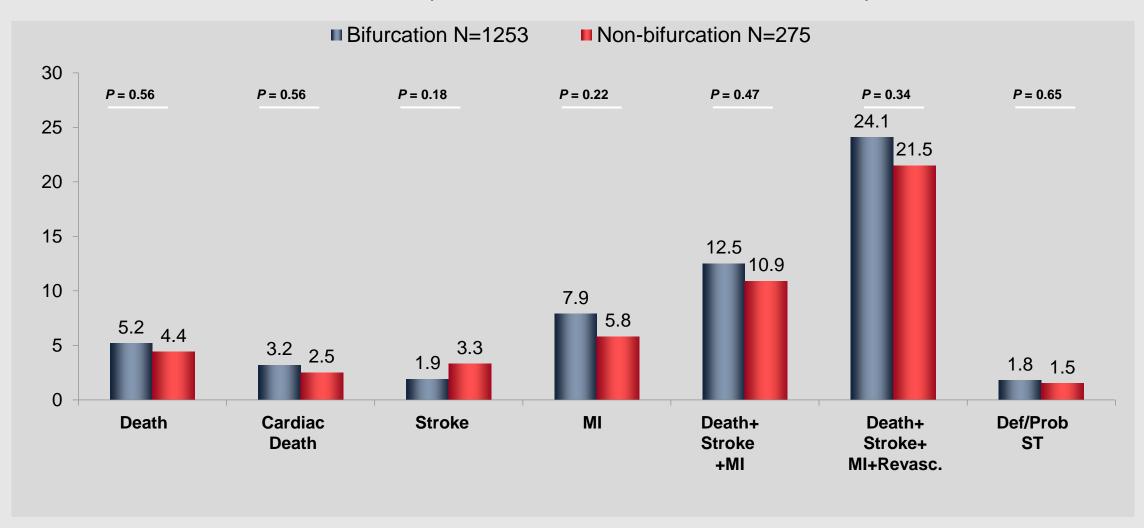

CABG is associated with *Increased Stroke Rates* compared to PCI

Meta-analysis of PCI with DES versus CABG for Unprotected LM

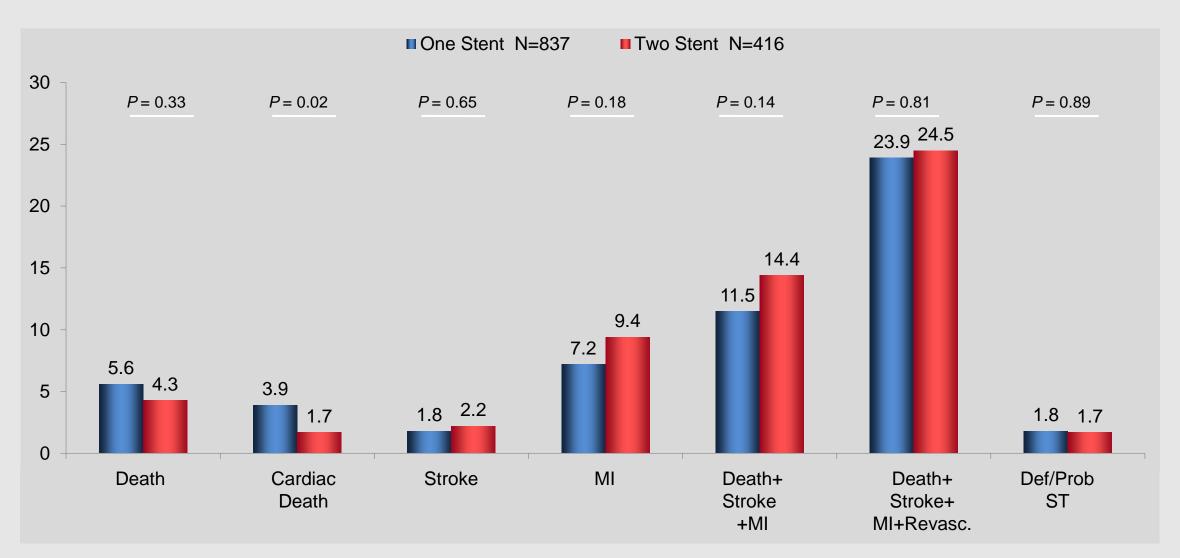

3 RCTs, 13 retrospective studies 5674 patients (PCI, n=2331; CABG, n=3343)

Increased TVR rates with PCI, in comparison to CABG

Does it matter where the left main lesion is situated?


SYNTAX: MACCE to 12 Months: LM PCI Subset: Distal vs Non-distal Lesions

^{*}Includes both aorto-ostial and mid-shaft lesions and patients with LM, LM+1,2,3VD


Lesion Location

Follow-up in 1,528 Left Main PCI Patients for 4.4 years

Does it matter how many stents are placed?

1 vs 2 Stents: Follow-up in 1,528 Left Main PCI Patients for 4.4 years

CABG – Dirty Little Secrets

These are not Endpoints in trials, unlike Repeat Revascularization

- "Nuisance" complications
 - Pain
 - Lower limb swelling
- Neurocognitive dysfunction still significant after CABG
- Atrial fibrillation (25%)
- Renal failure (3%)
- Bleeding requiring reoperation (3%)
- Pneumonia (2%)
- ARDS (1%)
- Bilateral IMAs at most 25%

So What is my message: Left Main PCI?

- 1. Left main PCI is safe
- 2. Important outcomes are no different to CABG in isolated left main
- 3. Certain cases are not suitable for PCI
 - esp when there is a large coronary disease burden

4. SO:

- Lets choose surgery when we really believe that the patient will receive long term benefit
- For all other cases, lets work together to determine the best option for the individual patient, taking into account:
 - Age
 - Co-morbidities
 - Technical feasibility
 - Bleeding risk
 - Patient preference

Lets also work to Improve Left Main PCI Outcomes

- Use best in class DES
- Optimal pharmacotherapy
- FFR
 - to avoid unnecessary stenting
 - to ensure complete revascularization
- IVUS guided LM stenting
- Optimal LM stent technique
 - 1 vs 2 stent techniques
 - Debulking
 - Hemodynamic support
 - Staging

EXCEL: PCI Procedure Highlights

Best in class DES				
DAPT and statin pre-loading	Required			
IVUS	Strongly recommended			
FFR	Strongly recommended			
Lesion preparation	Direct stenting strongly discouraged			
Distal LM bifurcation	Provisional stenting recommended			
Hemodynamic support	Permitted			
Staging	Liberal use permitted			

EXCEL: CABG Procedure Highlights

On-pump vs. off-pump	 Operator discretion If on-pump: single cross-clamp technique strongly recommended
• Intra-op TEE	Strongly recommended to assess LV function, cardiac valves, and ascending aorta
Arterial grafts	preferred conduits

Prediction for the future

Most Patients with Elective Left Main Disease
 WILL be treated with PCI in the near future

 Eventually both CABG and PCI will disappear and a new novel better therapy will emerge