

NB NB NB THIS PRESENTATION IS VIRTUALLY VERBATIM AS A PRESENTATION DONE BY DR JEAN VORSTER AS REFERENCED BELOW.

THIS IS CROSSING OUT OF THE REALM OF REFERENCING, AND WITHOUT HIS EXPRESS WRITTEN PERMISSION, I WOULD BE CONCERNED THAT THIS PRESENTATION WOULD BE CLASSIFIED AS PLAGIARISM. PLEASE CLARIFY THIS WITH THE CLIENT.

REFERENCE PRESENTATION:

Vorster J. Electrocardiogram: A valuable diagnostic tool. Presentation presented at; 2015; Netcare Unitas, STEMI Early Reperfusion initiative. AVAILABLE AT:

http://www.sasci.co.za/uploads/files/STEMI_Ear ly_Reperfusion_Template.pdf

ELECTROCARDIOGRAM

A VALUABLE DIAGNOSTIC TOOL FOR MYOCARDIAL IRREGULARITIES

OVERVIEW

 ARRHYTHMIAS
STRUCTURAL HEART DISEASE
ISCHAEMIA

1. ARRHYTHMIAS

CAUSES OF SINUS BRADYCARDIA

- 1. Drugs
- 2. Well-trained athletes
- Physiological (Sleep adolescents, young adults)
- 4. Myxedema
- 5. Hypothermia
- 6. Gram negative sepsis
- 7. Vomiting
- 8. Vasovagal syncope
- 9. Sick sinus syndrome
- 10. Intracranial tumours
- 11. Increased intracranial pressure

Rawshani A. Sinus bradycardia: definitions, ECG, causes and management – ECG learning [Internet]. ECG learning. 2016 [cited 5 February 2019]. Available from: https://ecgwaves.com/sinus-bradycardia-ecg-causes-treatment/ *File: Rawshani 4*

ELECTRICAL SYSTEM OF THE HEART

9

quard your heart

864

^{ch1}************************

ELECTRICAL SYSTEM OF THE HEART

11

quard your heart

2ND DEGREE AV BLOCK

Eitiology / causes of 2nd degree av block? Unsure how the list below relates to AV block

- 1. Increased vagal tone
- 2. Athletes
- 3. Sick sinus syndrome
- 4. Acute carditis
- 5. Ischaemic heart disease
- 6. Hyperkalaemia
- 7. Digoxin
- 8. Beta-blockers
- 9. Calcium-channel blockers

 Scher D. Evaluation and Treatment of Sick Sinus Syndrome - The Cardiology Advisor [Internet]. The Cardiology Advisor. 2017 [cited 26 February 2019]. Available from: https://www.thecardiologyadvisor.com/home/decision-support-inmedicine/cardiology/evaluation-and-treatment-of-sick-sinus-syndrome/

 Sovari A, Gaeta T, Kocheril A, Levine M. Second-Degree Atrioventricular Block: Practice Essentials, Background, Pathophysiology [Internet]. Emedicine.medscape.com. 2017 [cited 26 February 2019]. Available from: https://emedicine.medscape.com/article/161919-overview#a5

File: 2AVB 1

3RD DEGREE AV BLOCK

- 1. Idiopathic (Conduction tissue fibrosis)
- 2. Congenital
- 3. Ischaemic heart disease
- 4. Associated with aortic valve disease (Stenosis)
- 5. Cardiac surgery and trauma
- 6. Digoxin toxicity
- 7. Bundle branch interruption by tumors, granulomas, injury, etc.

Agrawal A, Guzman D. Third-Degree Atrioventricular Block (Complete Heart Block): Background, Pathophysiology, Etiology [Internet]. Emedicine.medscape.com. 2018 [cited 26 February 2019]. Available from: https://emedicine.medscape.com/article/162007-overview#a5 *File: 3AVB 1*

ATRIOVENTRICULAR NODAL REENTRY PATHWAY (AVNRT)

ATRIOVENTRICULAR REENTRY PATHWAY (AVNRT)

INCIDENTAL FINDING OF AN IRREGULAR PULSE

ATRIAL FIBRILLATION

- 1. Most common arrhythmia
- 2. Fivefold increase in risk of stroke
- 3. Twofold increase in all-cause mortality
- 4. Etiology/Underlying substrate:
 - a. Hypertension
 - b. Ischaemic heart disease
 - c. Mitral valve diseased
 - d. Cardiomyopathy (hypertrophic and dilated)
 - e. Hyperthyroidism
 - f. Open heart/thoracic surgery
 - g. Myocardial infarction
 - h. Pericarditis

Chopra H, Wander G, Chandra P, Kumar V. Atrial fibrillation update. 1st ed. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd.; 2017. *File: AF1; AF2*

ARTIAL FIBRILLATION - CONSEQUENCES

HEART FAILURE:

Loss of atrial contribution to LV filling:

Client to provide source of these percentages

• Loss of atrial systole – decrease in stroke volume: 15 – 20%

Accelerated ventricular response:

- Decrease in LV diastolic filling time
- Myocardial ischaemic

Tachycardia-induced Cardiomyopathy

29

ARTIAL FIBRILLATION - CONSEQUENCES

SYSTEMIC THROMBO-EMBOLISATION:

Loss of atrial systole (contraction/transport function)

Stasis of blood in LA

Thrombus formation (90% in left atrial appendage)

Fragmentation/Embolisation

30

ARTIAL FIBRILLATION - CONSEQUENCES

SYNCOPE

Associated arrhythmias:

- Sick Sinus Syndrome
- AV blocks

Accelerated ventricular response

- Structural heart disease e.g. Aortic Stenosis (fixed cardiac output)
- Underlying:
 - Ischaemia
 - LV dysfunvtion

ATRIAL FLUTTER

Less common than atrial fibrillation Can occur as a result of atrial dilation from:

- Septal defects
- Pulmonary emboli
- Mitral or tricuspid valve disease (stenosis/regurgitation)
- Heart failure
- Aging

Can also occur without underlying heart disease:

- Thyrotoxicosis
- Alcoholism
- Pericarditis

Vorster J. Electrocardiogram: A valuable diagnostic tool. Presentation presented at; 2015; Netcare Unitas, STEMI Early Reperfusion initiative. *File:* SASCI1 - Slide 36

ATRIAL FLUTTER - TREATMENT

1. Cardioversion:

- Electrical (≈ 50J DCC)
- Chemical-anti-arrhythmic drugs (Class IA, IC or III)
- 2. Ablation:
 - Highly effective (success rate >90%)
 - Preferred approach because of high relapse rate after cardioversion and difficult to control ventricular response with medical therapy (β-blockers, Ca-channel antagonist, digoxin or anti-arrhythmic drugs)

3. Risk of thrombo-embolism:

- Lower than with atrial fibrillation
- Indications for anticoagulation similar to atrial fibrillation

VENTRICULAR PREMATURE COMPLEXES

1. Occur in association with:

- Aging
- Excessive use of:
 - Tobacco
 - Caffeine
 - Alcohol
- Various medications
- Electrolyte imbalances (e.g. hypokalemia)
- Ischaemic or inflamed myocardium
- Infections
- Hypoxia
- Autonomic stimulation
- Anaesthesia
- Surgery

2. Importance depends on clinical setting:

- In the absence of underlying heart disease:
 - No impact on longevity or limitation of activity
 - Anti-arrhythmic drugs are not indicated

39

VENTRICULAR PREMATURE COMPLEXES

In the setting of an acute myocardial infarction:

- Occur in the early phase
- Seldom cause ventricular fibrillation (VF)
 - Frequent VPC's
 - Multiform configuration
 - Early coupling ("R-on-T")
 - Repetitive patterns (couplets/salvos)
- Check for:
 - Recurrent ischaemia
 - Electrolyte or metabolic disturbances
- Maintain S-K⁺ > 4.Smmol/I and S-Mg²⁺ > 2mmol/I
- B-blocker if sinus tachycardia
- Anti-arrhythmic drugs not indicated, may increase risk for fatal bradycardic and asystolic events

Low sensitivity and specificity for identifying patients at risk for VF

CHAOTIC (MULTIFOCAL) ATRIAL TACHYCARDIA

1. Characteristics:

- Atrial rates between 100 and 130 beats/min
- Marked variation in P-wave morphology (at least 3 P-wave contours)
- Irregular P-P intervals
- Variable PR-intervals

2. Etiology/Associations:

- COPD
- Congestive heart failure (elderly patients)
- Digitalis (unusual cause)
- Theophylline
- May develop into atrial fibrillation

3. Treatment:

- Avoid beta-blockers (COPD)
- Verapamil/Amioderone
- K-/Mg supplementation

46-year old male Mitral valve prolapse Infective endocarditis in 2012 -managed medically Rupture of chord with severe mitral regurgitation Underwent mitral valve repair in April 2014 This arrhythmia documented during routine follow up (asymptomatic)

FOCAL ATRIAL TACHYCARDIA

1. Characteristics:

- Atrial rates between 150 and 200 beats/min
- P-wave contour different from sinus P-wave
- At the onset there may be some warming up of the rate that results in an increase in heart rate over the initial several complexes
- Frequently occur in short, recurrent burst with spontaneous terminations; may also be incessant

2. Etiology/Associations:

- Coronary artery disease (with or without myocardial infarction)
- Heart failure
- Digitalis intoxication
- Potassium depletion
- Theophylline

3. May develop tachycardia-induced cardiomyopathy if incessant

4. Treatment:

- Beta-blockers/ Calcium channel blocker
- Discontinue digitalis
- K-supplementation

Vorster J. Electrocardiogram: A valuable diagnostic tool. Presentation presented at; 2015; Netcare Unitas, STEMI Early Reperfusion initiative. *File: SASCI1 - Slide 45*

ACCELERATED IDIOVENTRICULAR RHYTHM

1. Characteristics:

- Rate: 55 to 110 beats/min
- Broad QRS complex
- AV dissociation

2. Setting:

- Seen in 20% of STEMI patients
- Frequently occurs in first 2 days
- Most episodes are of short duration
- Occurs with about equal frequency in both anterior and inferior infarctions
- Often seen after successful reperfusion
- Not a reliable marker of reperfusion
- Not thought to affect prognosis
- No treatment required

Ischemic Cardiomyopathy (LV ejection fraction = 39%) Previous inferior myocardial infarction CABG - graft to right coronary artery Recurrent palpitations (no syncope)

VENTRICULAR TACHYCARDIA (VT)

1. Etiology:

- Most patients with symptomatic recurrent VT have ischemic heart disease
 - Sustained VT displays a circadian variation-peak frequency in the morning
- Next largest group has cardiomyopathy (congestive and hypertrophic)
- Lesser percentages:
 - Inherited ion channel abnormalities
 - Idiopathic VT
 - Congenital heart disease

2. Patients with sustained VT are more likely to have:

- Reduced ejection fraction
- ECG abnormalities (e.g., wide QRS)
- Previous myocardial infarction

POLYMORPHIC VT FROM HYPOKALEMIA

VENTRICULAR TACHYCARDIA (VT) - MUSCLE MANAGEMENT

1. Acute (Termination):

- No hemodynamic decompensation:
 - Anti-arrhythmic drug (e.g., Amioderone)
- Hemodynamic compromise/ decompensation:
 - Synchronized DC cardioversion (10 to 50J)
- Search for reversible cause:
 - Ischemia
 - Hypotension
 - Hypokalemia

2. Prevention of recurrences or sudden death:

- Implantable Cardioverter/Defibrillator (ICD):
 - LV ejection fraction < 35%
 - Survivors of cardiac arrest
 - Structural heart disease
 - Sustained VT with hemodynamic decompensation

ECG AND HEMODYNAMIC TRACING DURING ANGIOGRAPHY

VENTRICULAR FIBRILLATION

1. Clinical scenario's:

- Most commonly in association with coronary artery disease
 - As such a terminal event
 - Most frequently in the morning
- Anti-arrhythmic drug administration
- Hypoxia
- Ischaemia
- Electrical cardioversion (non-synchronized, faulty)
- Accidental electrical shock (improperly grounded)
- AF with pre-excitation (WPW)

2. Severe derangement of cardiac contractility:

• Terminate fatally or produce significant brain damage within 3 to 5 min unless corrective measures are undertaken promptly

3. Management:

• CPR and non-synchronized DC shock (200 to 400J)

2. STRUCTURAL HEART DISEASE

67 year old man Presented with unstable angina due to left main stem disease (underwent CABG)

RIGHT BUNDLE BRANCH BLOCK - SIGNIFICANCE

1. Common finding in general population:

- a. Many people with RBBB have no structural heart disease
- b. Fragility of RBBB

2. New onset RBBB predicts a higher rate of:

- a. Coronary artery disease
- b. Heart failure
- c. Cardiovascular mortality

3. In the presence of cardiac disease, coexistence of RBBB suggests:

- a. Advanced disease
- b. Extensive multi-vessel disease

Reduced long-term survival in ischaemic heart disease

Р 42

QRS 72

Client to provide source - unable to locate

60

61

LEFT BUNDLE BRANCH BLOCK

1. Criteria:

- QRS duration >120ms
- Broad, notched, or slurred R waves in leads I, aVL, $\rm V_5$ and $\rm V_6$
- Prolonged time to peak R wave (>60msec) in V₅ and V₆

2. ST-T wave changes

• ST-segment and T-wave discordant with QRS complex

LEFT BUNDLE BRANCH BLOCK - SIGNIFICANCE

- 1. Usually in patients with underlying heart disease:
 - 30% of patients with CCF have LBBB
 - 70% of people developing LBBB have preceding LVH (Only 12% of patients with LBBB have no demonstrable disease)

2. Prognostic implications:

- Higher risk of CV mortality from infarction and heart failure
- Higher risk of AV block and cardiac death
- CAD: more extensive disease and LV dysfunction and reduced survival rates

3. Obscuring other ECG patterns:

- Myocardial infarction (ST-segment elevation-equivalent) /ischaemia
- LV hypertrophy

LEFT ANTERIOR FASCICULAR (HEMI) BLOCK

LEFT ANTERIOR FASCICULAR (HEMI) BLOCK

LEFT VENTRICULAR HYPERTROPHY

1. Criteria:

- Sokolow Lyon: $SV_1 + RV_{5/6} > 35mV$
- Cornell voltage: $SV_3 + RaVL \ge 28mV$ (men)

 $SV_3 + RaVL \ge 20mV$ (women)

2. Etiology:

- Hypertension
- Aortic stenosis
- LV outflow tract obstruction

LEFT VENTRICULAR HYPERTROPHY

1. Other QRS changes in LVH:

- Widening of the QRS complex beyond 110ms
- Delay in the intrinsicoid deflection (ventricular activation)
- Notching of the QRS complex

2. ST-T wave patterns:

- Normal
- Somewhat elevated in leads with tall R-waves
- ST-segment slopes downward from depressed J-point and T-wave is asymmetrically inverted

3. Additional abnormalities:

- Prolongation of QT-interval
- Left atrial abnormality

LEFT VENTRICULAR HYPERTROPHY - SIGNIFICANCE

- 1. Increased risk for cardiovascular morbidity & mortality: LIFE study – Losartan antihypertensive therapy:
 - A 1 SD decrease in Cornell product associated with:
 - o 25% decrease in cardiovascular death
 - $\circ~$ 17% lower rate of myocardial infarction

2. Repolarization abnormalities:

- More severe degrees of anatomic LV hypertrophy
- LIFE study Greater risk of future cardiovascular events:
 - Significant increases:
 - Risk of cardiovascular death (HR, 2.42)
 - Myocardial infarction (HR, 1.95)

74 year old lady Cor Pulmonale with severe pulmonary hypertension secondary to chronic and multiple pulmonary emboli

48 year old female Cor Pulmonale Severe Pulmonary hypertension — PAP = 75 to 95mmHg Dilated RV and main pulmonary artery, paradoxical septal motion Spontaneous pulmonary embolism in 2007

RIGHT VENTRICULAR HYPERTROPHY

1. Criteria:

- $\operatorname{RinV}_1 \ge 0.7 \mathrm{mV}$
- R vs. S ratio in $V_1 > 1$ with R > 0.5mV
- Right axis deviation (> 90°)
- P-pulmonale

2. Etiology: Pulmonary hypertension

- Respiratory disease COPD, Interstitial lung disease
- Pulmonary emboli
- Left to right shunting ASD
- Idiopathic

Vorster J. Electrocardiogram: A valuable diagnostic tool. Presentation presented at; 2015; Netcare Unitas, STEMI Early Reperfusion initiative. *File: SASCI1 - Slide 78*

3. ISCHAEMIA

AFTER RESTORING FLOW TO LAD WITH PERCUTANEOUS CORONARY INTERVENTION

Rate	84	
PR	153	
QRSD	85	
QT	355	
QTc	420	
Ax i	g	
P	72	
QRS	27	

47 year old man with an occluded LAD

85

38 year old man Ischaemic chest pain

QRS T -3 130

Don't be caught between a rock and a hard place!

